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Abstract—In an environment of escalating usage of Low Earth
Orbit, the active remediation of debris is an increasingly nec-
essary capability. Computer vision pose estimation is a core
competency of active debris remediation but state-of-the-art
pose estimation methods continue to grow in size and complex-
ity. For bandwidth limited and edge computing cases, smaller
networks are more feasibly implemented. A 16,845 synthetic
image dataset, applicable to the upcoming JAXA CRD2 project,
is rendered and a small pose estimation network is constructed
and trained on the dataset. The network is then quantized, re-
ducing the memory requirement by a factor of 8x to a theoretical
size of 5.5 MB. The 5.5 MB network demonstrates sufficient
accuracy in both single image pose and motion prediction tasks
when compared to the full precision 32 bit network.

A summary of this work can be seen in Figure 1.
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1. INTRODUCTION
Interest in the development and use of satellite technologies
is increasing. Historically within the domain of civil and
defense agendas but now also fueled by commercial constel-
lations, the occupancy of Low Earth Orbit (LEO) is expected
to triple in the next couple of years [1]. A higher LEO
object count raises the chance of in-orbit collisions which
further increases the likelihood of generating additional LEO
objects. Termed the Kessler syndrome, this phenomenon was
originally modelled in 1978 and recommended various debris
mitigation engineering decisions [2]. Today, the orbital debris
problem is globally recognized [3] [4] [5] and, as shown in
Figure 2, growing [6].

The remediation of existing debris is a key research and
development thrust for the reduction of orbital debris [7] [8]
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Figure 1: Conceptual summary illustration of this work.

[9]. The strategic Active Debris Removal (ADR) of certain
key debris targets is a necessary measure for the stabilization
of LEO [10].

Satellite Pose Estimation

Irrespective of mission specifics, the ability to remotely
detect, track and analyze target inertial information is a
fundamental technical capability for ADR [13]. However,
the space sector faces a unique set of challenges compared
to terrestrial applications.

One major limitation is the lack of relevant data. Training an
image classifier or pose estimator for an object such as a car
or human is a relatively well defined engineering problem;
100,000+ ImageNet [11] and 25,000+ MPII [12] are just two
examples of the expansive datasets available for terrestrial
classification and pose estimation tasks. For satellite pose
estimation, datasets are much more limited. While rendering
a satellite image is comparably simple, it remains challenging
to acquire real satellite images in orbit. It is relatively
straightforward to train or optimize a pose estimation system
on rendered images, but transferring this pose estimation
performance across the domain gap to real images remains
a challenge.

A second major limitation is the minimal processing power
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Figure 2: Historical catalogued objects in Earth orbits.
[6]

for edge computing or minimal bandwidth for data transmis-
sion. Consider 3 examples:

• A deep space mission wherein the service spacecraft is
only able to transmit back a handful of images.
• A time critical orbiting mission where the service space-
craft is only able to transmit images when in range of ground
stations.
• An autonomous mission where the service spacecraft is
attempting to perform pose estimation on a small on-board
processor.

For each of these cases, a large consideration to be addressed
is: which images to prioritize processing? Evidently the
image selection process must be optimized to ensure suitable
accuracy with limited bandwidth or a pose estimator must be
optimized to operate on the spacecraft autonomously.

Objective

Currently, there are a number of ADR programs including
RemoveDebris [19], Clearspace [20] and the JAXA Commer-
cial Removal of Debris Demonstration (CRD2) [21]. It is in
the context of the Japanese project that this ADR analysis is
performed; this work contained three phases:

(I) Dataset
In preparation for the rocket body dataset, a render-to-real
validation study was first performed to analyze the domain
gap between synthetic renders and real images in the context
of image RGB values. A physical micro-satellite model and
a corresponding render model were created. Continuing pre-
vious work, physics and sensor-based noise were included to
help shrink the domain gap. Based on lessons learned, focus
then shifted to the mission specific dataset. A rocket body
model dataset was rendered; model geometry and material
properties were based on publicly available information for a
Japanese H2A rocket body.

(II) Pose Estimation Network
In the context of hardware feasible implementation and sim-
plicity, a CNN straight-shot pipeline was trained for pose
estimation. The spacecraft motion was estimated from the
CNN poses and the motion estimation error was compared
for a number of different image sampling strategies to reduce
image down-link requirements.

(III) Quantization Case Study

A short case study was completed for a quantized neural
network using the Incremental Network Quantization (INQ)
approach [22]. Pose and motion estimation results were then
compared to the baseline network to investigate the feasibility
of on-board satellite microprocessor pose estimation.

The original contributions of this paper may be identified as
follows:

• A freely available H2A upper stage synthetic dataset. Al-
though the dataset does not match the fidelity of state-of-
the-art Spacecraft PosE Estimation Dataset (SPEED), the
dataset is highly relevant to the current and active space debris
removal mission: CRD2. Augmentation of this dataset is a
trivial task and thus can easily accommodate more tumble
motion simulations and different targets. Additionally the
dataset contains motion sequences enabling both single image
pose estimation and multiple image motion estimation.

• The quantization of a hardware-feasible spacecraft pose
estimation network. This is a relatively new application
of quantization and to the best of our knowledge is only
beginning to be demonstrated [23].

2. RELATED WORK
Vision-based pose estimation for in-space applications did
not begin with neural networks. The Synchronized Positional
Hold Engage Reorient Experimental Satellites (SPHERES)
was installed on the International Space Station (ISS) in 2006
[24] [25] and was upgraded to perform visual mapping and
localization in 2012 [26] [27]. This platform contained two
cameras for stereo-vision as well as a supporting assortment
of gyros and ultrasonic sensors. The gyros supplemented
the algorithm’s rate estimations, the targets’ surfaces were
supplemented with high contrast patterned stickers and the
experiment took place in the relatively uniform lighting envi-
ronment of the ISS.

[28] used a monocular system and employed Gaussian pro-
cess regression as a pose estimator. The tumble motion was
restricted to 1D or 2D movement but the images were subject
to different lighting conditions and noise; additionally this
work was validated experimentally.

However, there is increasing support for neural network esti-
mation approaches. Especially in support of the active debris
remediation problem, a number of competitions and studies
have been completed featuring deep learning.

The Satellite Pose Estimation Challenge [29] developed
SPEED [15] using OpenGL synthetic images in addition to
real images of the Tango spacecraft from the Prisma mission
[30]. The competition produced a number of high accuracy
pose estimation pipelines. The highest accuracy pipelines
featured a keypoint detector Convolutional Neural Network
(CNN) architecture paired with a Perspective-n-Point (PnP)
algorithm to match the CNN output 2D correspondences to
the target 3D correspondences in post-processing [31] [32].
There was additionally some high performing direct regres-
sion networks that did not make use of a post-processing PnP
algorithm [33].

The SwissCube spacecraft pose estimation dataset improved
synthetic image fidelity further by, in addition to physically
realistic target rendering, including realistic modelling of the
Sun, Earth and star backdrops [34]. A further contribution
of this work was addressing the large scale variations charac-
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Figure 3: H2A 2nd stage.
[36]

teristic of space imagery (i.e. orbital debris can range from
mm to m in size and m to km in distance from the camera).
The proposed pose estimation pipeline used a feature pyramid
network to regress 2D projections at multiple scales.

More recently, the Stanford Space Rendezvous Laboratory
has developed the SPEED+ dataset [35], which includes ad-
ditional hardware-in-the-loop images of a physical spacecraft
mockup model; the intention of this dataset is to further
augment the synthetic SPEED dataset with realistic images to
enable pose estimation pipelines to better perform real image
inferences after training on synthetic images.

Terrestrial Pose Estimation

Spacecraft pose estimation is a relatively niche application of
pose estimation technology. Consequently, many applicable
developments are first discovered and introduced in earth-
bound research. The SwissCube spacecraft pose estimation
dataset was developed from work on hyper realistic material
rendering [16]. Their work introduced a novel parame-
terization of a material’s reflective properties, enabling the
ability to produce hyper realistic renderings of objects using
only material samples. This work is directly applicable to
rendering hyper realistic images of objects in space that do
not have prior images.

Spacecraft pose estimation pipeline architectures are typi-
cally adapted from terrestrial applications as well. The most
successful 6D pose direct regression network from the Satel-
lite Pose Estimation Challenge utilized an architecture similar
in structure to PoseCNN. PoseCNN was originally developed
for the pose estimation of household objects [17]. Recent
6D pose estimation accuracy improvements are trending in
the direction of denser 2D to 3D correspondence matching
as shown in ZebraPose [18]. While accurate, these denser
correspondence representations often require a correspond-
ingly heavier memory usage; however, a heavier memory
requirement further lowers the feasibility of installing a pose
estimation network on memory-limited spacecraft hardware.

3. DATASET
Based on publicly available data, the H2A rocket 2nd stage
was used as the target, viewable in Figure 3.

Dataset Development Validation Study

Without access to a physical model of the desired H2A 2nd
stage target, the objective was to create a render dataset. As
stated previously, the state of the art hyper realistic space-
craft rendering, as demonstrated in the SwissCube dataset,

Figure 4: Micro-satellite physical model (left)
and experimental setup (right).

required access to the reflective properties of the target ma-
terials [16]. Without access to the material properties or
the means to obtain them, it was determined that a separate
render-to-real analysis would be necessary to validate the
render dataset construction process. This further created
an opportunity to study the performance of pose estimation
systems across the domain gap in future studies.

Micro-satellite physical model—The micro-satellite physical
model was constructed as a 2x scale 2U satellite with di-
mensions 300 x 160 x 160 cm. The 2U physical model
can be seen in Figure 4 (left). The surface was primarily
composed of a typical satellite Multi-Layer Insulation (MLI)
and two varieties of solar panels. Inside, an air tank fed air
to 3 air-bearings located on the bottom of the model. Four
optical tracking markers and four simple aluminum antennas
were mounted on top. Additionally, two PCB cameras were
recessed into the casing.

Images were taken in a dark room. The micro-satellite model
rested on a granite testbed with three air bearings to enable
minimal friction 2D planar motion. The table was surrounded
by blackout curtains. The sole source of light was from
a 1000W parabolic light source. The camera was aligned
so as to avoid detecting primary light reflections from the
background. A schematic of the setup can be viewed in
Figure 4 (right).

Micro-satellite render model—The render model geometry
was constructed in Solidworks and then imported to Blender.
Blender’s Cycles renderer is a ray-trace engine with several
shader options including physically based shading. Material
properties were instead substituted by importing an image
of the material as a colormap and iteratively modifying
the blender Bidirectional Scattering Distribution Function
(BSDF) until a suitable output image quality was obtained;
the process flow is shown in Figure 5. A directional light
source with an intensity of 1000 W

m2 was used [37].

Note that as a ray-tracer engine Blender supports self-
reflections and self-occlusion. To best match real conditions
the selection of lighting sources in Blender must be chosen
with care. In orbit, direct sunlight, Earth albedo, Earth
originated radiation and atmospheric refraction effects may
all produce observable influences on an image. These effects
were not modelled here; the objective was to reproduce the
dark room experimental environment.

Render to Real Comparison—For comparison, a real exper-
imental image and a render of the micro-satellite are shown
in Figure 6. Immediately observable is the lack of complex
bloom behaviour in the blender render. However, the self
occlusion shading is reproduced with excellent accuracy.
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Figure 5: Blender material rendering process flow.

Figure 6: Micro-satellite real versus blender images.

Several regions of interest were compared in greater detail;
the bounding boxes depicting these regions have also been
drawn in Figure 6. As the images were input to the pose
estimation pipeline in RGB format, it was suitable to analyze
the RGB histograms. The histograms associated with Figure
6 are shown in the top row of Figure 7.

Even with representative material images as an input color
map, the RGB histograms differed greatly. In the overall
case, it can be seen that the real image contained a much
greater percentage of maximum intensity pixels (value 1). In
the MLI case, the blender render over-saturated many pixels.
In the solar panel case, the real and render distributions
were similarly located Gaussian distributions, although the
real image distribution depicted a larger variance. Based on
these observations, it would likely be a large challenge to
generalize a pose estimation pipeline to real image inference
when only trained on these render images.

Post Processing Image Augmentation—With the end objective
being pose estimation, it was ideal to train the pose estimation
pipeline to assess geometry. Building on previous work [13],
a post processing image augmentation function was con-
structed to de-emphasize image textures to focus the network
on target geometry. The function modified the images based
on different physical and sensor-based sources of noise and
was applied to both the real and render images:

1. Contrast Adjustment: To remove extraneous backdrop
geometry, the render image intensities < 0.1 were set to 0.

2. Gaussian Blur: To guide the pose estimation pipeline to
focus on larger geometric structures, a slight defocus was
included. The MATLAB 2D Gaussian filtering function
imgaussfilt() was used; the Gaussian distribution (σ) and filter
size were scaled proportional to the target distance.

3. Artificial Bloom: Often, camera pixels are sequentially
arrayed with anti-blooming drains at the end of a sequence.
If a single pixel cell is saturated, it may overflow into adjacent
cells [38]. 1D column Gaussian blurring was applied to inten-
sities > 0.78. Filter size and σ were scaled proportionally to
the target distance.

Histogram Overall MLI Solar Panel
Pre RGB .32, .30, .25 .33, .37, .39 .45, .34, .30
Pre mean 0.291 0.359 0.362
Post RGB .23, .17, .13 .11, .11, .23 .29, .25, .22
Post mean 0.176 0.148 0.254

Table 1: Battacharya Distance of Pre-Augmentation and
Post-Augmentation Image Histograms (lower is better).

4. Random Artifact: To reduce the pose estimation pipeline
reliance on specific image regions, a function was coded to
add an arbitrary shaped polygon to the image. The function
was passed 5 times over an image with a probability of 0.5 to
add a polygon.

5. Saturated Bloom: Observable in Figure 6, high intensity
locations were often accompanied by a gradient corona. This
function replicated such behaviour.

6. Speckle Noise: To improve the generality of the pose es-
timation pipeline, this function globally introduced ”speckle”
noise to the image. The MATLAB function imnoise() was
used here.

7. Sensor Saturation: Again, to improve the generality of
the pose estimation pipeline, this function globally increased
the image intensity by a random value in the range [0, 0.3].

The corresponding augmented images are shown in Figure 8.
Although not perfect, the augmented images include many
additional sources of noise which forces a neural network
to learn larger geometric features as opposed to more local
material features. This process was used to great effect in
[13]; the author was able to train a pose estimation pipeline
on a similarly rendered dataset for performing inferences on
real spacecraft images.

Augmented Render to Real Comparison—The Figure 8 aug-
mented image RGB histograms can be seen in the bottom
row of Figure 7. The improvement in real-to-render RGB
histogram similarity is easily observable. To quantify the
histogram similarity, the Battacharya distance metric [14] is
introduced here:

d(H1, H2) =

√√√√1− 1√
H1H2N2

N∑
i=1

√
H1(i)H2(i) (1)

Where H1, H2 are two histograms, H1, H2 are the mean of
the two histograms, and N is the total number of histogram
bins. The Battacharya distances for the pre-augmentation
and post-augmentation image comparisons are summarized
in Table 1. It is easily observable that the real and render
image similarity was greatly improved.

H2A Second Stage

With a suitable render pipeline developed and assessed, the
focus shifted to the H2A 2nd stage rocket body dataset.

The target orbital position was discretized from the Two Line
Element (TLE) set: 33500, an H2A 2nd stage in approxi-
mately sun-synchronous orbit. The inclination and period of
the orbit were 98.1◦ and 96.7 minutes, respectively. Three
different sunlight vectors were modelled to approximate po-
tential seasonal variations. The resulting orbit can be viewed
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Figure 7: Micro-satellite real versus render histograms for three regions.
Top row: image histograms before post processing augmentation.
Bottom row: image histograms after post processing augmentation.

Figure 8: Augmented real versus blender images.

in Figure 9. In a target-local Hill frame, two tumble motions
were simulated using a 4th order Runge-Kutta integrator with
time steps of 0.1s: a flatspin and a conic motion with fixed

nutation angle. An inertial matrix of

[
4.1 0 0
0 4.1 0
0 0 1

]
m was

used. Up to three complete orbits were simulated for each
case.

16,845 images were rendered across the two tumble motions,
three sun vectors and a variety of motion time steps. An
example of the flatspin case is shown in Figure 10 and the
conic case is shown in Figure 11. Note that the sunlight
intensity resulted in high contrast images with very little
colour information.

4. POSE ESTIMATION NETWORK
The pose estimation architecture was aimed at simplicity
rather than accuracy. A small and simple pose estimation
pipeline enabled minimization and quantization studies as
well as providing an excellent benchmark for future work
implementing the pipeline on spacecraft hardware. This ap-
proach was inspired by the direct regression network design
of [33]. The network architecture is depicted in Figure 12
and featured a ResNet backbone [39] with the final global
pooling layer and activation functions removed to maintain

Figure 9: H2A 2nd stage simulated orbit.

Figure 10: Flatspin tumble case.
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Figure 11: Conic tumble case.
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Figure 12: Overview of network architecture.

spatial resolution; the only remaining pooling occurred near
the beginning of the network in the input block. A small fully
connected network was post-fixed to regress the required
output terms. However, our loss function and ground truth
differed considerably from previous works.

Again, to maintain a simple post-processing averse design,
the orientation vector was directly regressed without requir-
ing PnP [31] [32] or probabilistic fitting [33] post processing.
Instead an 8x1 ground truth vector was constructed contain-
ing image plane angles, target fixed frame angles and a signed
3 bit quadrant value indicating which quadrant the target is
“pointed” towards; the details can be seen in Table 2 and
Figure 13.

A weighted Mean Squared Error (MSE) loss function with
control weights α, β and γ were used during training:

L(y, ŷ) =
α

2

2∑
i=1

(yi−ŷi)
2+

β

3

5∑
i=3

(yi−ŷi)
2+

γ

3

8∑
i=6

(yi−ŷi)
2

(2)
Where y, ŷ are the the network output and ground truth and
i is the vector encoding index. In this way, a higher weight
was lent to the quadrant value at the start of training to help
the network converge, while a higher weight was lent to the
image plane values near the end of training to improve the
accuracy.

While unorthodox, the image plane representation was a
simple regression problem for a CNN whose hidden layers

Vector Description Reference
θin Angle about z-axis IP
θout Angle about x-axis IP
Θ Pitch OF
Ψ Roll OF
Ω Yaw OF

[111] Value indicating quadrant OF

Table 2: Ground Truth Vector Encoding.
IP - image plane
OF - object frame

Figure 13: Output vector frames of reference.

Case RMSE
Flatspin A In-plane Angle 16.22◦

Flatspin B In-plane Angle 5.52◦

Conic In-plane Angle 1.79◦

Conic Out-plane Angle 1.04◦

Table 3: Root Mean Square Error (RMSE) Results for
Flatspin and Conic Motions

were inherently operating in the image plane domain. Again,
the quadrant bit value was a relatively trivial regression prob-
lem for the neural network but helped greatly during initial
training for convergence and also theoretically maintained
utility for object tracking; these values could increase the
stability of a hypothetical Kalman Filter tracking the object’s
motion. Finally, the Euler angles, although a poor regression
choice due to their order of operations, maintained utility
as they could be directly calculated from the image plane
representation as:

θin = arctan

(
cosΘ cosΨ

sinΘ

)
(3)

θout = arctan

(
cosΘ sinΨ

sinΘ

)
(4)

Pose Estimation Results

The pose estimation pipeline was trained for 25 epochs on im-
ages featuring two of the three sun vectors and then validated
and tested on the third sun vector images. A closer inspection
of the results can be found in the Section Quantization
Case Study. A summary of the prediction performance for
all cases is shown in Table 3. It is worth noting that the
poorest network predictions occurred at the limits of the conic
motion. Overall, the results were highly reliable and suitably
accurate to perform motion predictions.

Limited Bandwidth Motion Estimation

Up till now, this work has described a dataset and corre-
sponding pose predictions in ideal circumstances. Indeed, the
contribution of a large part of the computer vision community
is focused on algorithm improvement and optimization for
well classified problems and datasets. However, as discussed
previously, spacecraft pose estimation faces the unique chal-
lenge of bandwidth limitation.

Spacecraft attitude and motion estimation is a mature subject
of study [40] [41] with still recent developments in the
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Strategy Flatspin A Est. Rate Flatspin B Est. Rate
Ground Truth 1.0000 deg/s 1.0000 deg/s
(Ideal) All 1.0004 deg/s 0.9995 deg/s
(A) First/Last 1.0004 deg/s 1.0039 deg/s
(B) Last 36 0.9970 deg/s 0.9880 deg/s
(C) Every 120s 1.0004 deg/s 1.0001 deg/s

Table 4: Flatspin Rate Estimation Results for Image Sample
Strategies

context of computer vision [42] [43]. However, the vast
majority of these studies explicitly or implicitly assume a
constant sample rate. Depending on the computer vision atti-
tude determination mission specifics, maintaining a constant
image sample rate may be neither possible or efficient.

During a hypothetical debris capture mission, the target mo-
tion must be accurately resolved both spatially and tempo-
rally. Consider the simple flatspin case depicted in Figure
10 with a rate of 1 deg/s. This motion was simulated for 1
orbit. Four simple image sample strategies were used: (Ideal)
All images; (A) First and last image; (B) Last 36 images;
and (C) An image every 120s. The rate was then simply
estimated from a least-squares regression fit from the sampled
images. The results are shared in Table 4. In the event that
the ideal case is not possible, sampling over a longer period of
time improved motion estimation accuracy. Sampling at the
maximum possible sample rate for only the last 36 images
consistently yielded the worst rate estimations.

Conversely, a high sample rate is required to exclude higher
order motion harmonics. If an image is captured every 1 s,
[1, 2 ... 10 ...] deg/s rates are all possible rate estimations.
In conventional signal processing theory, a sampling rate
sufficient to resolve the signal is referred to as the Nyquist
sample rate [44] and equates to at least twice the observed
harmonic motion. However, a non uniform sampling rate
could theoretically exclude higher order harmonics as well.

From this discussion it can be determined that: sampling
over a longer period of time will result in a higher estimator
accuracy; and the images must be sampled with sufficient
frequency to resolve the motion. Thus bandwidth or memory
restricted space missions should likely tend towards non-
uniform sampling motion estimators such as a non-uniform
Kalman Filter [45].

5. QUANTIZATION CASE STUDY
Previously, bandwidth limited terrestrial-based post process-
ing limitations have been discussed. However, the ideal case
is to perform pose estimation locally; i.e., edge computing.
One of the current major challenges is the large disconnect
between pose estimation pipeline size and the available mem-
ory of typical spacecraft hardware. Current state-of-the-art
pose estimation systems are orders of magnitude too large;
Wide Depth Range has 51.6 million parameters [34], Ze-
braPose has 30.5 million parameters [18] and SO-POSE has
51.1 million parameters [46]. The implementation of these
networks onto spacecraft hardware is not feasible without
modification.

There are a number of methods to reduce network size.
Pruning removes filters and weights of least importance from
the network [47] [48]. Knowledge distillation uses a large

Case 32 bit 4 bit 2 bit

Testing Loss 435.1 567.1 1047.6
θin Error 1.89◦ 1.83◦ 3.04◦

θout Error 0.88◦ 0.93◦ 1.99◦

Table 5: Quantized Network Prediction: Single Image

network or ensemble of networks to train a smaller specific
application network [49]. A particularly promising method is
quantization, which reduces the bit representation of values in
the network (Eg. reducing the 32 bit floating point values to
4 bit or 2 bit representations). Recently, quantization meth-
ods have even been applied to a spacecraft pose estimation
network [23]. The Incremental Network Quantization (INQ)
approach was adopted here [22] based on the implementation
methodology of [50]. For convenience, our slightly modified
quantization algorithm is summarized in Algorithm 1.

Algorithm 1 Incremental Network Quantization

1: Input: Training data
2: Input: σ1, σ2, ..., σN
3: Input: Wl : 1 ≤ l ≤ L
4: for n = 1, 2, ...Nepochs do
5: Update learning rate and policy
6: for l = 1, 2, ...Llayers do
7: From σn update Al, A

q
l , Tl

8: Quantize the weights in Aq
l

9: Calculate feed-forward loss
10: Update Al values with gradient descent
11: end for
12: end for
13: Output: W q

l : 1 ≤ l ≤ L
• σn is the fraction of weights to be quantized at epoch n
• Wl is the full precision model (untrained)
• W q

l is the quantized model (trained)
• N is the number of epochs to train
• L is the number of layers in the network
• Al is the unquantized weights at layer l
• Aq

l is the quantized weights at layer l
• Tl is a binary matrix specifying quantized weights,
where [Wl][Tl(0)] = Al and [Wl][Tl(1)] = Aq

l

On the more challenging conic motion dataset, three networks
were trained: a full precision 32 bit network, a 4 bit network
and a 2 bit network. The pose estimation pipeline was trained
for 750 epochs with a negative pseudo-logarithmic quantiza-
tion schedule (e.g. 40% of the network was quantized in the
first 100 epochs). Prediction results for the first 200 images
are shared in Figure 14 with the corresponding prediction
errors in Figure 15; the testing loss function (Equation 2) and
angle error results are shared in Table 5.

The 2 bit network quantized all weights and filters to the set
[−1, 0, 1]; there was a notable reduction in accuracy, doubling
the testing loss and angle estimation errors. Observing figure
14, it can be seen that the worst performance occurred at
the limits of the conic motion; thus a good follow up would
be to explore more dynamic and extreme motion profiles.
However, it is clear that the 2 bit network was still able
to track the motion well. The 4 bit network exhibited
performance extremely similar to the full 32 bit network,
even demonstrating a slightly higher accuracy for the θin
parameter.

Normally, a Kalman filter variant would be the tool of choice
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Figure 14: First 200 Network Predictions for the Conic Motion θin (left) and θout (right) Angles

Figure 15: First 200 Network Prediction Errors for the Conic Motion θin (left) and θout (right) Angles

Fit Value Ground
Truth (GT) 32 bit 4 bit 2 bit

a [◦] 30.5 30.6 30.3 30.2
1/b [s] 660.6 659.2 660.1 659.6
R2 (↑ +) - 0.99 0.99 0.98

RMSE (↓ +) - 1.8 1.8 3.0

Table 6: Quantized Network Prediction: θin Motion Fit

for motion estimation. However, as the conic motion was
sinusoidal, a simple least squares regression to a sinusoidal
curve fit was performed here. The three network predictions
and ground truth data were fit to a four parameter sinusoid
defined here in Equation 5.

θin/out(t) = a ∗ sin(bt+ c) + d (5)

Where t is the time associated with that particular tumble
simulation render, a is the magnitude term, b is the frequency
term and c, d are offset terms. θin and θout fit results are
shared in Tables 6 and 7. It can be easily observed that the
4 bit network motion prediction accuracy matched the 32
bit motion prediction accuracy. Additionally, depending on
the mission constraints, the 2 bit network motion prediction
results may also be sufficient. Clearly, the 4 bit network
would be an excellent contender to be installed on spacecraft
hardware. This network architecture had approximately 11
million parameters. Reducing the network from 32 bit to 4
bit (or 2 bit) resulted in a theoretical network size reduction
of 44 MB to 5.5MB (or 2.75MB).

Fit Value Ground
Truth (GT) 32 bit 4 bit 2 bit

a [◦] 30.6 31.0 30.3 29.5
1/b [s] 571.4 571.1 571.1 572.1
R2 (↑ +) - 1.00 1.00 0.99

RMSE (↓ +) - 0.8 0.9 1.8

Table 7: Quantized Network Prediction: θout Motion Fit

6. CONCLUSION
This work was performed in the context of the JAXA CRD2
mission. From publicly available information, a target model
was constructed, an orbit was discretized and two tumble
motions were simulated. From the simulated information we
developed and share the new dataset. Although the dataset
does not match the fidelity of state-of-the-art SPEED+, the
dataset is directly applicable to an active debris capture mis-
sion. It is expected that research interest and developments
surrounding the JAXA CRD2 mission will continue to grow
and thus our dataset will continue to be of value. A render-
to-real validation study was performed on the dataset and
an image-augmentation post-processing pipeline (established
from sensor and physics-based noise) was implemented, im-
proving the render-to-real image comparison.

A small pose estimation network was constructed, optimized
for small size and simplicity over accuracy; for future works,
this network could be more feasibly installed on spacecraft
hardware. The network was trained on data containing two
sun-angle vectors and tested on a third sun-angle vector
data. A simple case study explored bandwidth limited cases
and concluded that non-uniform sampling motion estimators
should be utilized.

8



A quantization study was performed comparing a full 32
bit precision to 4 bit and 2 bit networks. The quantized
networks demonstrated sufficient accuracy for both single
pose prediction and motion estimation tasks. The 4 bit
network theoretically represented a factor of 8x in memory
savings. The resulting 5.5 MB network could more easily be
implemented on spacecraft hardware.

Follow up work will be focused on implementing the net-
work on hardware and incorporating a non-uniform sampling
motion estimator. In parallel, network performance across
the domain gap will be analyzed using the micro-satellite
physical and render models.
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